Krawitz: Stress tensor profile: A1-B1-E1-C1 PHT, Set 1 ______________________________________________________ determination of eigenvalues by jacobi's method, where n = 3 itmax = 50 eps1 = 0.100E-09 eps2 = 0.100E-09 eps3 = 0.100E-04 the starting matrix a(1,1)...a(n,n) is 0.610E+02 -0.310E+02 -0.900E+01 -0.310E+02 -0.550E+02 0.340E+02 -0.900E+01 0.340E+02 0.300E+02 iter = 1 sigma1 = 0.765E+04 sigma2 = 0.118E+05 iter = 2 sigma1 = 0.118E+05 sigma2 = 0.120E+05 convergence has occured, where iter = 3 s = 0.120E+05 sigma2 = 0.120E+05 ____________________ eigenvalues eigen(1)...eigen(n) are 0.761E+02 -0.722E+02 0.321E+02 eignevectors are in corresponding columns of the following matrix 0.866E+00 -0.198E+00 0.460E+00 -0.307E+00 -0.935E+00 0.176E+00 -0.395E+00 0.294E+00 0.870E+00 corresonding angles (degrees) 30.049408 159.266251 29.507499 ______________________________________________________ determination of eigenvalues by jacobi's method, where n = 3 itmax = 50 eps1 = 0.100E-09 eps2 = 0.100E-09 eps3 = 0.100E-04 the starting matrix a(1,1)...a(n,n) is 0.760E+02 -0.600E+01 0.300E+01 -0.600E+01 -0.400E+01 0.300E+01 0.300E+01 0.300E+01 0.111E+03 iter = 1 sigma1 = 0.181E+05 sigma2 = 0.182E+05 convergence has occured, where iter = 2 s = 0.182E+05 sigma2 = 0.182E+05 ____________________ eigenvalues eigen(1)...eigen(n) are 0.762E+02 -0.454E+01 0.111E+03 eignevectors are in corresponding columns of the following matrix 0.994E+00 0.753E-01 0.810E-01 -0.773E-01 0.997E+00 0.217E-01 -0.791E-01 -0.278E-01 0.996E+00 corresonding angles (degrees) 6.348386 4.604505 4.809068 ______________________________________________________ determination of eigenvalues by jacobi's method, where n = 3 itmax = 50 eps1 = 0.100E-09 eps2 = 0.100E-09 eps3 = 0.100E-04 the starting matrix a(1,1)...a(n,n) is 0.223E+03 -0.260E+02 -0.900E+01 -0.260E+02 0.700E+02 0.400E+01 -0.900E+01 0.400E+01 0.194E+03 iter = 1 sigma1 = 0.923E+05 sigma2 = 0.938E+05 convergence has occured, where iter = 2 s = 0.938E+05 sigma2 = 0.938E+05 ____________________ eigenvalues eigen(1)...eigen(n) are 0.230E+03 0.657E+02 0.192E+03 eignevectors are in corresponding columns of the following matrix 0.953E+00 0.162E+00 0.257E+00 -0.161E+00 0.987E+00 -0.232E-01 -0.257E+00 -0.194E-01 0.966E+00 corresonding angles (degrees) 17.682536 9.385557 14.953151 ______________________________________________________ determination of eigenvalues by jacobi's method, where n = 3 itmax = 50 eps1 = 0.100E-09 eps2 = 0.100E-09 eps3 = 0.100E-04 the starting matrix a(1,1)...a(n,n) is 0.189E+03 0.100E+01 0.120E+02 0.100E+01 0.480E+02 0.710E+02 0.120E+02 0.710E+02 0.121E+03 iter = 1 sigma1 = 0.527E+05 sigma2 = 0.627E+05 iter = 2 sigma1 = 0.627E+05 sigma2 = 0.630E+05 convergence has occured, where iter = 3 s = 0.630E+05 sigma2 = 0.630E+05 ____________________ eigenvalues eigen(1)...eigen(n) are 0.193E+03 0.451E+01 0.160E+03 eignevectors are in corresponding columns of the following matrix 0.937E+00 -0.294E-01 -0.349E+00 0.159E+00 -0.852E+00 0.498E+00 0.312E+00 0.522E+00 0.793E+00 corresonding angles (degrees) 20.522581 148.449874 37.493379 Maximum = 0.12700E+02 Minimum = 0.38100E+01 Scale Factor = 0.26247E+01 x(1)= 0.00000E+00 y(1)=-0.13333E+02 z(1)=-0.78740E+01 x(2)= 0.13333E+02 y(2)=-0.13333E+02 z(2)=-0.78740E+01 x(3)= 0.23333E+02 y(3)=-0.13333E+02 z(3)=-0.78740E+01 x(4)= 0.33333E+02 y(4)=-0.13333E+02 z(4)=-0.78740E+01