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a b s t r a c t

Manipulating acoustic wave propagation through a material have several interdisciplinary
applications. Here we predict shift in energy flux deviation for acoustic waves propagating
in unidirectional graphite/epoxy due to applied normal and shear stresses using both an
analytical model, using acoustoelastic continuum theory, and a finite element discrete
numerical model. The acoustoelastic theory predicts that the quasi-transverse (QT) wave
exhibits larger shifts in energy flux deviation compared to quasi-longitudinal (QL) or the
pure transverse (PT) due to an applied shear stress for fiber orientation angle ranging from
0° to 60°. Due to an applied shear stress theQTwave exhibits a shift in energy flux deviation
at 0° fiber orientation angle as compared to normal stress case where the flux deviation
and its load induced shift are both zero. A finite element model (FEM) is developed where
equations of motion include the effect of nonlinear elastic coefficients. Element equations
were integrated in time using Newmark’s method to determine the shift in energy flux
deviations in graphite/epoxy for different loading cases. The energy flux shift of QT waves
predicted by FEM for fiber orientation angles from 0° to 60° for applied shear stress case
is in excellent agreement with acoustoelastic theory. Because energy shift magnitudes are
not small, it is possible to experimentally measure these shifts and calibrate shifts with
respect to load type (normal/shear) and magnitude.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recent developments in guiding and magnifying acoustic wave propagation through a medium and their application to
engineering have invoked tremendous interest among the scientific community. Developments of acoustic metamaterials
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Fig. 1. Wave types (QT, QL, PT), energy flux propagation directions, Ei , and in-plane co-ordinate axes, x1–x3 , defined with respect to fiber orientation for a
unidirectional graphite/epoxy composite.

have proven to act as hyperlenses for several applications in non-destructive material testing and medical ultra-sound
imaging [1–3]. In these studies, the anisotropy of the material is the governing factor in guiding the wave propagation.
Several studies [4–7] have shown that acoustic cloaking can be achieved by controlling the microstructure of the material.
These studies indicate that by changing the anisotropy of thematerial, the acoustic waves can be guided through amaterial.
Acoustic wave propagation has interdisciplinary applications and is a widely used technique in engineering and medical
sciences [8–10]. In this paper, we show how the anisotropy changes due to an externally applied load to a fiber reinforced
composite material, which in turn can be used to control the acoustic wave propagation direction.

In an anisotropicmaterial, the direction of energy flux (energy per unit time per unit area) of an ultrasonic planewave de-
viates from the intended direction of propagation as compared to an isotropic material, where the energy flux propagates in
a direction parallel to the wave front normal vector, ni, see Fig. 1. This phenomenon, exhibited by linear elastic anisotropic
materials, is known as the energy flux deviation. The elastic coefficients of the material influence the energy flux devia-
tion [11,12]. Energy flux deviation was experimentally observed in quartz crystals [11,13] and unidirectional graphite fiber
reinforced epoxy [14,15].

Nonlinear elastic behavior is generally neglected in ultrasonic wave propagation due to small strains (or small ampli-
tude) imposed on the sample; however this effect can be predominant in three cases of wave propagation as pointed out by
Green [13]. First, the amplitude of the wave may be large enough to cause finite strains in the material. In the second case
nonlinear behavior occurs when a small amplitude wave is superimposed on a large external static stress, and finally non-
linear effects caused by defects in the material. In this paper the second case of nonlinear effects is studied for measurable
shifts in energy flux deviations of waves propagating in graphite/epoxy. Tokuoka and Iwashimizu [16] derived the Christof-
fel equation for an anisotropic material under stress assuming hyperelasticity using plane wave solution. Man and Lu [17]
later extended the applicability of Christoffel equation to general types of loading history and plastic deformations. Prosser
et al. [18] studied graphite/epoxy for applied stress along fiber axis and laminate stacking direction using acoustoelastic
theory andmeasured the flux deviation angle. UsingMan and Lu’s theory [17] Degtyar and Rokhlin [19] derived in detail the
equation ofmotion due towave propagation superimposed on a prestressed solid and also studied the elastic wave propaga-
tion between twogenerally anisotropic stressed solids aswell as stressed solid and fluid for differentmaterials [20]. Zhuk and
Guz [21] studied nanocompositematerial with prestress, where the nonlinearitywas described by theMurnaghan potential.
Similarly, Parnell [22] used asymptotic homogenization theory in the deformed configuration to find the effective response
of a prestressed nonlinear elastic composite bar. The flux shift is also observed in graphite/epoxy due to themoisture absorp-
tion by the matrix or fiber degradation [23]. A recent study involving experiments and simulations show that stress wave
trajectory can be controlled [24] by the anisotropy of the material. Even though Prosser et al. [18] studied shifts in energy
flux deviations due to normal stress effects on graphite/epoxy, the flux deviation due to shear stress was left unexplored.

In this paper, we study the effect of nonlinear elasticity on shifts in energy flux deviation in unidirectional graphite/epoxy
due to applied normal and shear stresses. Due to elastic nonlinearity the angle of flux deviation can bemeasured as a function
of applied stresses. We model the energy flux deviation using acoustoelastic theory [17] and the flux shift, which is the
difference between flux deviation angle due to applied stress and the flux deviation due to zero stress state, is compared
for different stresses. Finite element equations are derived for equation of motion containing nonlinear elastic coefficients,
Cijklmn, and integrated in time using Newmark’s method. We predict the energy flux shift for quasi-transverse (QT) wave
using finite element method (FEM) for fiber angle orientations ranging from 0° to 60° and then compare with acoustoelastic
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theoretical predictions for the applied shear stress case. The results from this study demonstrate that load induces significant
shifts in energy flux deviations that can be experimentally verified when a shear stress greater than 0.1 GPa is applied to
unidirectional graphite/epoxy over a range of fiber orientations.

2. Theory

Elastic wave propagation in solids can be described in mathematical form as a function of stiffness coefficients of the
material and the spatial and time derivatives of displacement. In this section, the analytical formulation of the stress-induced
anisotropy is introduced and how it is incorporated into the wave equation is presented. Based on the analytical model, the
derivation of the finite element equations is shown along with the time integration methodology.

2.1. Analytical formulation

The energy flux vector Ej associated with planar waves is related to the elastic stiffness coefficients Cijkl and the spatial
and time derivatives of displacement vector ui by the following equation [11,12].

Ej = −Cijkl


∂uk

∂xl

 
∂ui

∂t


(1)

Here we use acoustoelastic theory to include the nonlinear elastic properties on the energy flux deviation. According to
acoustoelastic theory, the applied stress σij changes the linear elastic coefficients to give an effective linear stiffness tensor
using the following relation [25].

C∗

nlij = Knlij + σljδni (2)
where C∗

nlij is the effective linear stiffness tensor, σlj is the applied stress, δni is Kronecker delta. Due to the applied stress,
the effective stress tensor C∗

nlij lacks full symmetry (relative to permutation between the index pairs n, l and i, j), however
shows the following symmetry C∗

nlij = C∗

ijnl [25]. The second order tensor Knlij is defined [18] as a function of Cijklmn (third
order stiffness tensor).

Knlij = Cnlij + Crlijεnr + Cnsijεls + Cnlpjεip + Cnliqεjq + Cnlijuvεuv

+ Crlijuvεuvεnr + Cnsijuvεuvεls + Cnlpjuvεuvεip + Cnliquvεuvεjq (3)
In Eq. (3) Cnlij is the linear elastic coefficient, Cnlijuv is the nonlinear elastic coefficient, which is also known as third order

stiffness coefficient with respect to the strain energy function, and εnr is the strain resulting from the applied stress σij.
The third order stiffness tensor has the following symmetry relations Cnlijuv = Clnjuv = Cijnluv = Cuvijnl [20]. Our analysis
shows that the inclusion of third order elastic constants can change the effective stiffness tensor for graphite/epoxy by
±0.9 GPa. The strain can be found as the product of compliance tensor (inverse of Cnlij) and the applied stress. The Knlij tensor
is composed of ten terms, five linear terms and five nonlinear terms. Eq. (2) has nine nonzero termswhen normal stresses are
applied and shear stresses are zero. The inclusion of shear stress terms will lead to an additional eighteen terms. This is too
cumbersome to expand by hand and solve, hence we use a computer program to compute all of the terms used to determine
C∗

nlij tensor. For example if C∗

nlij is nonsymmetric with 81 independent terms and each of these terms is the sum of 27 terms,
the total number of terms is 2187. Previous investigations [18] have looked into normal stress cases and general stress states.

Eq. (1) can now be written as

Ej = −σ ′

ij


∂ui

∂t


; where σ ′

ij = C∗

ijklε
′

kl (4)

where σ ′

ij is the stress and ε′

kl the strain due to the wave propagation. The Christoffel equation for the wave propagation in
terms of the effective linear elastic coefficient assuming a plane periodic solution can be written as [16,19,26]

(C∗

ijkllllj − ρv2δik)αk = 0 (5)
where C∗

ijkl is the effective linear stiffness tensor, ll is the direction cosine of the wave normal, δik is Kronecker delta and αk is
the eigenvector or the direction cosine of particle displacement vector corresponding to each eigenvalue ρv2 (ρ is density
and v is velocity). The energy from Eq. (4) is time averaged over one cycle to get Ei, where Ei = σ ′

ikαk. The total energy over
one cycle is defined as E

2
T = E

2
1 + E

2
2 + E

2
3, hence the direction cosines of energy flux vector is given as a =

E1
ET

, b =
E2
ET

and

c =
E3
ET
.

The flux deviation angle (δ) in Fig. 1 is computed as the difference between the angle (θ ) that energy flux vector makes
with the x3 axis and the wave normal vector (ni) makes with respect to the x3 axis. Mathematically, the flux deviation angle
(δ) can be represented as follows:

δ = tan−1((tanβ − tan θ)/(1 + tanβ tan θ)) (6)
where tan(β) = a/c is defined in terms of the direction cosines of energy flux vector. A positive flux deviation corresponds
to deviation of energy towards the left hand side of the wave normal ni as shown in Fig. 1.
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2.2. Finite element formulation

In order to confirm the flux deviation angles predicted by acoustoelastic theory, the finite element method [27] along
with Newmark’s method [28] in time is used to solve the equations of motion at each time step. The equation for small
elastic motion due to wave propagation superimposed on a prestressed state in the absence of body forces can be written as

σ ′

ij,j = ρui,tt (7)

where σ ′

ij is the stress defined by Eq. (4), ρ is the density and ui is the displacement as a result of wave propagation in the
material. The weak form [29] is constructed by multiplying Eq. (7) by arbitrary functions which represent virtual displace-
ments δui.

V
δui(σ

′

ij,j − ρui,tt)dV = 0 (8)

Integrating the above equations by parts and using divergence theorem gives the weak form of the governing equations as
follows

0 =


V
(σ ′

ijδεij + δuiρui,tt)dV −


S
(σ ′

ijnjδui)dS (9)

Substituting σ ′

ij = C∗

ijklε
′

kl, and assuming plain strain conditions (
∂u2
∂x1

=
∂u2
∂x2

=
∂u2
∂x3

=
∂u1
∂x2

=
∂u3
∂x2

= 0), Eq. (9) can be written
over the domain Ω as

Ω


∂δu1

∂x1


C∗

1111
∂u1

∂x1
+ C∗

1113
∂u1

∂x3
+ C∗

1131
∂u3

∂x1
+ C∗

1133
∂u3

∂x3


+

∂δu1

∂x3


C∗

1311
∂u1

∂x1
+ C∗

1313
∂u1

∂x3
+ C∗

1331
∂u3

∂x1
+ C∗

1333
∂u3

∂x3


+ δu1ρ

∂2u1

∂t2


dx1dx3 −


Γ

(δu1t1n)dS = 0 (10)
Ω


∂δu3

∂x1


C∗

3111
∂u1

∂x1
+ C∗

3113
∂u1

∂x3
+ C∗

3131
∂u3

∂x1
+ C∗

3133
∂u3

∂x3


+

∂δu1

∂x3


C∗

3311
∂u1

∂x1
+ C∗

3313
∂u1

∂x3
+ C∗

3331
∂u3

∂x1
+ C∗

3333
∂u3

∂x3


+ δu3ρ

∂2u3

∂t2


dx1dx3 −


Γ

(δu3t3n)dS = 0 (11)

Eqs. (10) and (11) represent the weak formulation of the equation of motion in the x1 and x3 directions. Finite element
approximations are sought for displacements u1 and u3 assuming that the dependence of displacement on time is separated
from the dependence on x1 and x3 directions. The approximations take the form,

u1(x1, x3, t) =

n
j=1

Uj(t)Γ
u1
j (x1, x3), u3(x1, x3, t) =

n
j=1

Wj(t)Γ
u3
j (x1, x3) (12)

where, Γj represents the shape functions, which are continuous in the sub-domain of the problem over an element. The
selection of the shape functions [27] or interpolation functions aremade in such away that the displacements are continuous
across the boundary of each element of the finite element mesh and other conditions demanded by the variational form.
The coefficients of the approximating functions are the nodal displacement values in each element node. Substituting these
approximations into the weak form Eqs. (10) and (11) and the collection of coefficients of variations of displacements and
placing them in matrix form will give the following matrix equations.

[Mu1u1 ][0]
[0][Mu3u3 ]

 
{ü1}

{ü3}


+


[K u1u1 ][K u1u3 ]

[K u3u1 ][K u3u3 ]

 
{u1}

{u3}


=


f u1


f u3

 (13)

where M is the mass matrix, K is the stiffness matrix, f is the force vector and u and w are the displacements in the x1 and
x3 directions. Each sub matrix in Eq. (13) is defined as follows

Mu1u1
ij =


Ω

[ρΓ
u1
i Γ

u1
j ]dx1dx3 (14)

Mu3u3
ij =


Ω

[ρΓ
u3
i Γ

u3
j ]dx1dx3 (15)

K u1u1
ij =


Ω


C∗

1111
∂Γi

∂x1

∂Γj

∂x1
+ C∗

1113
∂Γi

∂x1

∂Γj

∂x3
+ C∗

1311
∂Γi

∂x3

∂Γj

∂x1
+ C∗

1313
∂Γi

∂x3

∂Γj

∂x3


dx1dx3 (16)

K u1u3
ij =


Ω


C∗

1131
∂Γi

∂x1

∂Γj

∂x1
+ C∗

1133
∂Γi

∂x1

∂Γj

∂x3
+ C∗

1331
∂Γi

∂x3

∂Γj

∂x1
+ C∗

1333
∂Γi

∂x3

∂Γj

∂x3


dx1dx3 (17)
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K u3u1
ij =


Ω


C∗

3111
∂Γi

∂x1

∂Γj

∂x1
+ C∗

3113
∂Γi

∂x1

∂Γj

∂x3
+ C∗

3311
∂Γi

∂x3

∂Γj

∂x1
+ C∗

3313
∂Γi

∂x3

∂Γj

∂x3


dx1dx3 (18)

K u3u3
ij =


Ω


C∗

3131
∂Γi

∂x1

∂Γj

∂x1
+ C∗

3133
∂Γi

∂x1

∂Γj

∂x3
+ C∗

3331
∂Γi

∂x3

∂Γj

∂x1
+ C∗

3333
∂Γi

∂x3

∂Γj

∂x3


dx1dx3 (19)

Due to certain symmetry properties of C∗

ijkl tensor under applied stress, the resulting FEM elemental stiffness matrix K is
symmetric.

2.2.1. Integration in time
The Newmark’s constant average-acceleration method is used to compute the displacements for each time step. This is

an extremely well-knownmethod, and its application for solving wave equation can be found in Refs. [28,30]. It is sufficient
to state that the generic velocity component U̇ and displacement component U for time t + 1t are assumed to possess the
forms

U̇ t+1t
= U̇ t

+ [(1 − δ)Ü t
+ δÜ t+1t

]1t (20)

U t+1t
= U t

+ U̇ t1t +


1
2

− α


Ü t

+ αÜ t+1t


1t2 (21)

The selection of constants δ = 0.5 and α = 0.25 provides unconditional stability to the problem. The equilibrium equation
at time t + 1t can be written as

MÜ t+1t
+ CU̇ t+1t

+ KU t+1t
= Rt+1t (22)

Here M is mass matrix, C damping matrix, K the stiffness matrix, Ü the acceleration vector, U̇ the velocity vector, U the
displacement vector, and R is the load vector for time t + 1t . From Eqs. (20) and (21), the accelerations and velocity can be
written in terms of unknown displacements alone. This relation is then substituted into (22) to compute the displacements.
The initial acceleration vector is evaluated using the initial conditions, and the analysis proceeds in stepwise fashion as each
of the fields is updated at the end of the specified time step.

3. Simulation setup and validation

3.1. Analytical

Herewe assume that the graphite/epoxy is transversely isotropic for computing the flux deviation angle at different stress
states. The x3 axis is taken as the fiber orientation axis and x1 axis the laminate stacking direction. A positive flux deviation
is defined as the energy flux deviation from the wave normal ni to the left side; while a negative flux deviation implies that
the energy deviates towards the right side of ni axis, Fig. 1. The elastic linear and nonlinear coefficients for graphite/epoxy
are listed in Tables 1 and 2. In both tables, tensor notation is replaced with contracted Voigt notation.

An in-house computer code is used to compute the flux deviation angles (Eq. (6)) for the zero stress state and applied
normal and shear stress states from 0° to 60° fiber orientation. In all cases, the flux shifts are calculated for fibers oriented
from 0° to 60° at intervals of 10°. First we validate the flux deviation angles for in-plane quasi-longitudinal (QL) and quasi-
transverse (QT) waves, and out-of-plane pure-transverse (PT) waves under zero stress state with Prosser et al. [18] and Kriz
and Heyliger [31], then we compute the flux shift of QT, QL and PT waves for an applied shear stress of 0.1 GPa in the x1–x3
plane. In order to study the effect of shear stress in flux shift, the flux shift is calculated at different shear stresses. Finally, a
comparison of flux shift is carried out with normal stress of 0.1 GPa along x1 axis and 1.0 GPa along x3 axis.

3.2. Finite element simulation

The finite element equation ofmotion derived in Section 2.2 is solved by a computer code generated in FORTRAN to study
stress-induced shifts in energy flux deviations. The computation of energy flux deviation, and stress-induced shifts, is then
carried out for both zero stress state and applied shear stress state for each 10° interval of fiber orientation angle. In this
section, we first discuss the dispersion effects when using a finite element method for wave propagation and then validate
the FEM code for a 2-D graphite/epoxy plate under zero stress state.

3.2.1. Dispersion of waves
When using finite elements to model wave propagation, numerical dispersion is observed when wave velocity is a func-

tion of the number of finite elements contained within the wavelength of a propagating wave. Here the study of dispersion
in unidirectional graphite/epoxy is carried out, which has a transversely isotropic symmetry and is highly anisotropic. The
objective is to study the effect of anisotropy on the flux deviation (group velocity) propagation direction as a function of
different unidirectional fiber orientations, 0° to 60°.



A.K. Nair et al. / Wave Motion 51 (2014) 1138–1148 1143

Table 1
Linear elastic coefficients [15].

Cij (GPa)

C11 14.26
C12 6.78
C13 6.5
C33 108.4
C44 5.27

Table 2
Third order (nonlinear) elastic coefficients [15].

Cijk (GPa) C111 C112 C113 C123 C144 C155 C344 C133 C333

−214 −89 −4 6.5 −33.4 −49.1 −47 −243 −325

In general, the energy flux associated with the actual wave ‘‘group’’ velocity deviates from the wave ‘‘phase’’ velocity,
which is associated with normal to the plane wave front, ni. Between 0° and 90°, the group velocity deviates from the phase
velocity and the energy associated with the wave initially launched at the boundary as an in-plane pure transverse (T) wave
bifurcates into an in-plane quasi-transverse (QT) and in-plane quasi-longitudinal (QL) waves. No energy associated with the
in-plane pure transverse (T) wave at the boundary is transferred to the out-of-plane pure-transverse (PT) wave. At 0° and
90° fiber orientations the group and phase velocities are the same. This case is used here for simplicity to study dispersion
of in-plane pure transverse (T) waves prior to studying dispersion at various fiber orientations.

We use a 60 × 30 mesh for this study with four-noded isoparametric elements. Increasing the number of elements
at the boundary transducer results in an increase in the number of elements contained in the T wave that is launched at
the boundary. For 12, 16, 20 and 24 elements per wavelength, we observe 3, 4, 5, and 6 elements respectively contained
within the propagating T wave. Another important observation is the increasing wave velocity with increasing number of
elements per wavelength contained in the propagating T wave. This is expected since larger number of elements contained
in a propagating wave approach the ideal case of a wave propagating in a non-dispersive continuum. With only 4 elements
per wavelength the propagating T wave is altered by the FEMmesh, which has a group velocity of zero, which demonstrates
significant dispersion. Dispersion isminimized but still exists even at 24 elements perwavelength at the boundary. However
24 elements per wavelength will require larger FEMmeshes where QT waves are predicted to deviate as much as 25° to the
left. The numerical dispersion is an artifact of the element size used and could be eliminated by further decreasing the
element size. As in most cases when modeling complex phenomena simplifying approximations are necessary and results
must be interpreted within these approximations. A detailed description of this phenomenon along with animations of FEM
simulations can be found at [32].

3.2.2. Stress waves in graphite/epoxy
In order to check the validity of the code for anisotropicmaterial, the behavior of stress waves in a graphite/epoxy plate is

studied and results are compared with Kriz and Heyliger [31] and Nair and Heyliger [30]. A rectangular orthotropic plate of
graphite/epoxy is oriented in the x1–x3 plane (‘‘in-plane’’) with the fibers oriented at an angle of θ from the vertical direction,
Fig. 1. The plate displacements are fixed to zero along the vertical boundaries in Fig. 1, while the other two horizontal
boundaries are traction-free. We use rectangular mesh comprising of 4050 four-noded isoparametric elements in total with
90 elements along the horizontal boundary and 45 elements along the vertical boundary. The parameters for the constant-
average acceleration Newmark method are δ = 0.5 and α = 0.25, and density of graphite/epoxy is taken as 1610 kg/m3.
We use 24 elements per wavelength to simulate a transducer along the lower horizontal boundary and 20 time increments
per wave period without inducing significant discretization errors and also to reduce wave dispersion effects. One cycle
sinusoidal displacements were imposed in the horizontal direction (‘‘in plane pure transverse’’) at 25 consecutive nodes
along the lower horizontal boundary of the plate for a time period of 2 × 10−05 s (with a frequency of 50,000 cycles/s). The
material properties used were those of graphite epoxy under zero stress state and are given in Table 3.

When the nodes of the simulated transducer are displaced horizontally (pure transverse in-plane) along the lower
horizontal boundary, energy is distributed into both QT and QL waves, however parametric studies show that if nodes are
constrained in the x1–x3 plane and displaced in the direction predicted by the eigenvector solution of Christoffel’s equation,
energy can be preferentially fluxed exclusively into the QTwavewith no energy transferred to the QLwave. This is important
because acoustoelastic theory predicts larger flux shifts for the QT wave (see Section 4) under an applied shear stress state.

4. Results and discussions

In this paper, we predict the shift in energy flux deviation of elastic waves propagating through graphite/epoxy due to
an applied shear stress using acoustoelastic continuum theory and a discrete FEM model. Fig. 2 shows the flux deviation
angle for zero stress predicted using acoustoelastic theory. All three wave forms QL, QT and PT exhibit flux deviation due
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Table 3
Material properties used for finite element simulation.

C∗

ijkl (GPa) Zero stress state Applied shear stress of 0.1 GPa

C∗

1111 14.26 14.23
C∗

1113 = C∗

1311 0 −0.54

C∗

3113 = C∗

1331 5.27 5.24
C∗

1131 = C∗

3111 0 −0.64

C∗

1133 = C∗

3311 6.5 6.47
C∗

1333 = C∗

3313 0 0.30

C∗

1313 = C∗

3131 5.27 5.24
C∗

3133 = C∗

3331 0 0.40

C∗

3333 108.4 108.37

Fig. 2. Energy flux deviation angle of QL, QT and PT waves in graphite/epoxy with respect to fiber orientation angle under no applied stress shows that QL
and QT waves have more flux deviation compared to PT wave.

to the anisotropy of graphite/epoxy. QL and QT has more flux deviation as compared to PT. These results are in excellent
agreement with that of Kriz and Ledbetter [33] and Prosser et al. [18]. In order to study the effect of normal stress on energy
flux deviation, first a normal stress of 0.1 GPa is applied along the x1 axis and then the flux shift due to each stress is computed
with respect to the fiber orientation angle. We find that the QT wave exhibits the largest load induced energy flux shift due
to an applied normal stress along the x1 axis while QL and PT exhibits small flux shift, this is consistent with [18], thus
expressing confidence in our methodology and results that follows.

We then apply a shear stress of 0.1 GPa in the x1–x3 plane (‘‘in-plane’’) in order to find the energy flux shift of QL, QT
and PT as a function of fiber orientation angle (Fig. 3). It is obvious from Fig. 3 that QT has the most flux shift, while QL and
PT have flux shifts close to zero. The QT wave has a 6.73° flux shift at 0° due to the applied shear stress as compared with
applied normal stresses, which has zero flux shift at 0° (see Fig. 4). The nonzero flux shift at 0° due to the shear stress is the
result of the shear strain that is induced in the material. Unlike the strains caused by normal stresses, this small shear strain
affects the particle vibration in the direction of the flux shift. A comparison is done for the flux shift of QT wave for normal
stress of 0.1 GPa along x1 axis and 1.0 GPa along x3 axis with a shear stress of 0.1 GPa (Fig. 4) in the x3–x1 plane. Results
from Fig. 4 indicate the flux shift in QT wave due to the shear stress is larger than that of the normal stress cases. The higher
flux deviation of QT wave due to the shear stress compared to that of normal stress could be explained by the fact that the
effective stiffness tensor C∗

nlij hasmore components (see Appendix and Table 3) associated with the shear stress than normal
stress, which in turn changes the anisotropy of graphite/epoxy. Moreover the values of these components are higher (more
than 1% in some of the components) than that of the normal stress.

Since the QT wave exhibits significant flux shift, shear stresses of 0.01, 0.02, 0.04, 0.08 and 1.0 GPa are applied and the
corresponding flux shift is plotted for QTwavewith respect to fiber orientation angle (Fig. 5), thus depicting that as the shear
stress increases the flux shift also increases. This variation in flux shift of the QT wave is linear with applied shear stress.

To verify the flux shift predicted for QT wave in graphite/epoxy due to an applied shear stress by the acoustoelastic con-
tinuum theory, we use the finite elementmodel to compute the flux shifts for QTwave. The graphite/epoxy plate is oriented
in the x1–x3 plane with the fibers oriented at an angle of θ from the vertical direction (Fig. 6). The plate displacements are
fixed to zero along the vertical boundaries in Fig. 6. The upper and lower horizontal boundaries are traction-free. The plate is
modeled using a rectangular mesh of 4050 four-noded isoparametric elements with 90 elements in the horizontal direction
and 45 elements are in the vertical direction. The constants used for the constant-average acceleration Newmark method
are δ = 0.5 and α = 0.25 density of graphite/epoxy is taken as 1610 kg/m3. After a preliminary parametric study (Sec-
tion 3.2.1), it is determined that aminimumof 24 elements perwavelength simulate a transducer along the lower horizontal
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Fig. 3. Energy flux shift of QL, QT and PT waves in graphite/epoxy with respect to fiber orientation angle due to an applied shear stress of 0.1 GPa in the
x1–x3 plane. The QT wave undergoes flux shift at 0° compared to QL and PT.

Fig. 4. Comparison of flux shift of QT wave due to an applied shear stress of 0.1 GPa with respect to flux shift in QT wave due to an applied normal stress
of 0.1 GPa along x1 axis and 1.0 GPa along x3 axis. The applied shear stress case has higher flux deviation compared to applied normal stresses.

Fig. 5. Energy flux shift of QTwave in graphite/epoxy as a function of fiber orientation angle due to applied shear stress of 0.01, 0.02, 0.04, 0.08 and 1.0 GPa
in the x3–x1 plane. The variation in flux shift is linear with the applied shear load.

boundary and 20 time increments per wave period would reduce wave dispersion such that results are valid for paramet-
ric studies used in this study. One cycle of sinusoidal displacements is imposed in the horizontal direction (‘‘in plane pure
transverse’’) at 25 consecutive nodes along lower horizontal boundary of the plate for a time period of 2 × 10−05 s with
a frequency of 50,000 cycles/s in order to flux more energy into the QT wave. The material properties used are given in
Table 3. It is evident from Table 3 (column 3) that there are additional stiffness C∗

ijkl components due to the applied shear
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Fig. 6. Energy flux deviations including energy shift in unidirectional graphite/epoxy for various fiber orientations. Energy shift caused by a shear stress
of 0.1 GPa applied to the fiber orientation is shown. Waves launched at the boundary use 24 elements per wavelength to minimize dispersion.

stress and these are incorporated in the finite element equations. These fourth order coefficients correspond to an applied
shear stress of 0.1 GPa, this stress state corresponds to a high flux shift of 6.73° predicted by acoustoelastic theory. When
the fourth order stiffness tensor C∗

ijkl is unsymmetric the finite element stiffness matrix is also unsymmetric. Finite element
simulations are carried out for 0°, 10°, 20°, 30°, 40°, 50° and 60° fiber orientations for both zero stress state and applied
shear stress state to determine the flux deviation angles and hence a stress-induced energy flux shift.

The QL wave is the fastest wave launched in the material and once it gets to the top surface it is reflected back. Because
very little energy is transferred to the QL wave the QL wave is not predominantly observed in Fig. 6 for angles less than 50°.
As observed from Fig. 6 the QT wave starts deviating towards the left side from the centerline of the transducer for fiber
orientation angle from 0° to 30°. As the fiber orientation angle reaches 30° QT wave starts to deviate towards the centerline
of the transducer. This observation is consistent with the acoustoelastic theory predictions (see Figs. 5 and 7).

It is obvious from Fig. 6 that for the fiber orientation of zero degrees energy flux deviation is not zero for the QT wave.
The flux shift predicted by FEM is 6.8°. This validates the acoustoelastic theory prediction. The QT flux shift is determined
for each 10° fiber orientation up to 60° and the results are plotted in Fig. 7. The FEM predicts the trend of flux shift for QT
wave due to applied shear stress with reasonable accuracy. This is an independent confirmation of the energy flux shifts.

We believe that the predictions from this paper will be useful to develop and design new composite materials that can
channel energy due to an applied stress. The methodology outlined in this paper will be useful to study several materials in
nature e.g. rocks, which undergo high stress states and will have direct applications in petroleum industry. Novel structural
materials/components can be developed for earthquake resistance. The design of these structures can be tailored further to
guide the energy for optimum performance or flaw detection in nondestructive testing.
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Fig. 7. Comparison of flux shifts predicted by acoustoelastic theory and FEM shows that the flux shifts for QT have a finite value at 0° fiber orientation.
Inset shows loading at 0°, 30° and 60°.

5. Conclusions

In this paper we use the acoustoelastic theory and FEM to model the wave propagation in graphite/epoxy due to an
applied shear stress. It is found out that the applied shear stress changes the anisotropy of graphite/epoxy hence leading
to a shift in energy flux deviation. The flux deviation angles for zero stress were found for QL, QT and PT waves for fiber
orientation angles from 0° to 60°. The energy flux shift for graphite/epoxy due to normal stress along x1 and x3 axes were
also found and compared well with previous results. The flux shift of QL, QT and PT waves were found for the applied shear
stress case. Important conclusions that can be drawn from the results are

(i) The QL and QT waves exhibit flux deviation in graphite/epoxy at zero shear stress due to the anisotropy of the material.
Flux deviation of the PT wave is relatively small.

(ii) The application of normal stresses to graphite/epoxy leads to shifts in energy flux deviations for QL, QT and PT waves
from the zero stress state, with QT waves having a larger shift compared to QL and PT waves.

(iii) The application of the shear stress also leads to shifts in the flux deviation in QL, QT and PT waves, but QT has a higher
flux shift compared to QL and PT. The QT wave has significant flux shift at 0° and 60° due to the applied shear stress,
where as the flux shift of QT wave under a normal stress from 0° to 60° is nearly zero.

(iv) The flux shift in QT wave due to applied shear stress is much higher than that of flux shift in QT wave due to normal
stresses.

(v) The finite element model mesh density is tested for dispersion and it is determined that a minimum of 24 elements
per wavelength at the simulated transducer boundary is required to approach the exact theoretical acoustoelastic
predictions of shifts in energy flux deviation for various fiber orientations and loads.

(vi) The FEMprediction of the energy flux shift for QTwave under an applied shear stress for fiber orientation angles ranging
from 0° to 60° independently confirms the acoustoelastic theory predictions.
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Appendix

Expanding Eq. (3) for the case of shear stress = 0.1 GPa which leads to a shear strain of ε31 = ε31 = 0.0095. There are
five linear elastic terms and ten nonlinear terms as expanded out in equations below.

K1113 = C1113 + C3113ε13 + C1313ε13 + C1133ε13 + C1111ε31 + C111313ε13
+ C111331ε13 + C311313ε13ε13 + C311331ε31ε31 + C131313ε13ε13 + C131331ε31ε13
+ C113313ε13ε13 + C113331ε31ε13 + C111113ε13ε31 + C111131ε31ε31 (A.1)

K1131 = C1131 + C3131ε13 + C1331ε13 + C1111ε13 + C1133ε31 + C113113ε13 + C113131ε31
+ C313113ε13ε13 + C313131ε31ε13 + C133113ε13ε13 + C133131ε31ε13
+ C111113ε13ε31 + C111131ε31ε31 + C113313ε13ε13 + C113331ε31ε13 (A.2)
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K1313 = C1313 + C3313ε13 + C1113ε31 + C1333ε13 + C1311ε31 + C131313ε13 + C131331ε31
+ C111313ε31ε31 + C111331ε31ε31 + C133313ε13ε13 + C133331ε31ε13
+ C331313ε13ε13 + C331331ε31ε13 + C131113ε13ε31 + C131131ε31ε31 (A.3)

K1331 = C1331 + C3331ε13 + C1131ε31 + C1311ε31 + C1333ε13 + C133113ε13 + C133131ε31
+ C333113ε13ε13 + C333131ε31ε13 + C113113ε13ε31 + C113131ε31ε31
+ C131113ε13ε31 + C131131ε31ε31 + C133313ε13ε13 + C133331ε31ε13 (A.4)

Substituting values from Tables 1 and 2 into Eqs. (A.1)–(A.4), the values of coefficients are K1113 = −0.64 GPa (−0.64 GPa),
K1131 = −0.64 GPa (−0.64 GPa), K1313 = 5.24 GPa (5.24 GPa) and K1331 = 5.24 GPa (5.24 GPa), where values in parentheses
correspond to computer code used to compute these coefficients. The hand calculations carried out here validates the code
used to compute the nonlinear elastic coefficients due to an applied stress.
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